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Abstract

This paper develops a successive approximation approach (SAA) of optimal sliding mode control (SMC) for linear time-

delay systems with sinusoidal disturbances. A sequence of two-point boundary value (TPBV) problems with both time-

delay and time-advance terms is derived from the optimal sliding mode design. According to the SAA, the original TPBV

problems are transformed into a sequence of linear TPBV problems without delay and advance terms. The obtained SMC

ensures that the state trajectories reach the sliding surface in finite time and remain on it thereafter. The stability of the

sliding mode is proved. A numerical simulation is employed to verify the effectiveness of the proposed approach.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Sliding mode control (SMC) is known to achieve high-performance robust control against external
disturbances and unpredictable parameter variations in some certain conditions. The sliding mode occurs on a
prescribed switching surface [1]. Consequently, designing the sliding surface is the same important as designing
the controller. Many researchers have dedicated themselves to constructing the sliding surface. A time-varying
sliding surface is designed for fast and robust tracking in a class of second-order uncertain systems [2]. For a
class of uncertain dynamic systems with mismatched uncertainties, a new design method of linear sliding
surfaces, which are linear to the state is developed based on the linear matrix inequality (LMI) approach [3].
The sliding surfaces for uncertain systems with single or multiple, constant or time-varying state delay are
designed so to maximize the calculable set of admissible delays [4]. Based on the Lyapunov method, a
controller guaranteeing convergence of the state trajectory to the sliding manifold is developed and then
generalized to account for uncertainties in the delay for a class of uncertain time-delay systems [5]. A new
nonlinear integral-type sliding surface, which incorporates a virtual nonlinear nominal control to achieve
prescribed specifications is presented for both matched and unmatched uncertain systems [6]. Constructed
from a Riccati inequality associated with quadratic stabilizability, a method to design robust sliding surfaces
in the presence of mismatched parametric uncertainty is proposed [7].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The analysis and synthesis of the time-delay systems is one of the difficult and hot investigations in control
theory and control engineering domain since time delay often occurs in various engineering systems. Because
the presence of time delay often causes serious deterioration of the stability and performance of the system,
considerable research has been devoted to the control of time-delay systems. SMC for time-delay systems with
mismatched parametric uncertainties is developed [8]. A design method for the variable structure control of
distributed time-delay systems is studied by constructing a finite dimensional system, which contains all the
unstable poles of the original time-delay system [9]. Based on the LMI technique and the sliding mode variable
structure control method, an SMC approach is proposed for a class of uncertain time-delay systems with
mismatching uncertainties [10]. An observer-based SMC problem is studied for state-delay systems with
immeasurable slates and nonlinear uncertainties [11].

Many practical control systems are frequently affected by sinusoidal disturbances. For example, the
vibration control for offshore structures, where the sinusoidal disturbances are mainly from the ocean wave
forces [12]. The flight attitude control under wind shear stresses, where the sinusoidal forcing terms arise from
a model for wind shear based on harmonic oscillations [13]. Other applications include wave loads on ships
sailing [14], noise reduction in vehicles and transformers [15], vibration damping for industrial machines and
periodic disturbance reduction in disk drives [16]. Hence, the systems with sinusoidal disturbances have
extensive engineering background.

The purpose of this paper is to design an optimal SMC for linear time-delay systems with sinusoidal
disturbances based on the SAA [17]. First, some state variables of the given system are regarded as virtual
control. The original TPBV problem with delay terms is transformed into a sequence of linear TPBV problems
by using the SAA. The obtained optimal sliding mode consists of analytic terms and a compensation term,
which is the limit of the adjoint vector sequence. Using a finite term of the adjoint vector sequence, the sliding
mode is gotten. Then a new SMC is obtained, which drives the trajectories to reach the sliding surface in finite
time. The stability of the sliding mode is analyzed. An example is presented to verify the validity of the
proposed method.

2. Problem statement

Consider a class of linear time-delay systems with sinusoidal disturbances described by

_x1ðtÞ ¼ A11x1ðtÞ þ A12x1ðt� tÞ þ A13x2ðtÞ þDvðtÞ,

_x2ðtÞ ¼ A21x1ðtÞ þ A22x1ðt� tÞ þ A23x2ðtÞ þ A24x2ðt� tÞ þ BuðtÞ þ dðx; tÞ; t40,

x1ðtÞ ¼ j1ðtÞ;x2ðtÞ ¼ j2ðtÞ; �tptp0; ð1Þ

where xiðtÞ 2 Rni ; x ¼ ½ x
T
1 xT

2 �
T and uðtÞ 2 Rn2 are the state vector and the control vector, respectively; A1j,

A2j, B and D are constant matrices of appropriate dimensions, t is a positive time delay, ji(t) are the known
continuous initial state vectors, v(t)ARm is an external sinusoidal disturbance vector, dðx; tÞ 2 Rn2 is bounded
matching perturbation and/or disturbance.

Assumption 1. The pair (A11, A13) is completely controllable.

Assumption 2. The dynamic characteristics of the external sinusoidal disturbance vector v(t) can be expressed
by

vðtÞ ¼

v1ðtÞ

v2ðtÞ

..

.

vmðtÞ

2
666664

3
777775 ¼

a1 sinðo1tþ c1Þ

a2 sinðo2tþ c2Þ

..

.

am sinðomtþ cmÞ

2
666664

3
777775, (2)

where the frequency oi are known constant. The amplitude ai and the phase ci may be unknown, but vi are
measurable.
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Assumption 3. There exists a known non-negative scalar function r(x) such that
dðx; tÞ
�� ��prðxÞ. (3)

Regarding x2 as virtual control of the first subsystem in system (1), one can choose the average quadratic
performance index as

J ¼ lim
T!1

1

T

Z T

0

½xT
1 ðtÞQx1ðtÞ þ xT

2 ðtÞRx2ðtÞ�dt, (4)

where Q, R are positive-definite matrices of appropriate dimensions. The optimal sliding surface design is to
find a virtual control law xn

2ðtÞ, which minimizes quadratic performance index (4) subject to dynamic equality
constraint (1).

According to the optimal control theory, the optimal sliding mode design may lead to a TPBV problem in
which both time-delay and time-advance terms are involved:

_x1ðtÞ ¼ A11x1ðtÞ þ A12x1ðt� tÞ � SlðtÞ þDvðtÞ,

� _lðtÞ ¼ Qx1ðtÞ þ AT
11lðtÞ þ AT

12lðtþ tÞ,

x1ðtÞ ¼ j1ðtÞ; �tptp0,

lð1Þ ¼ 0, ð5Þ

where S ¼ A13R�1AT
13 and the virtual control law can be written as

xn

2ðtÞ ¼ �R�1AT
13lðtÞ. (6)

Choosing the optimal sliding surface as

snðtÞ ¼ Rxn

2ðtÞ þ AT
13lðtÞ ¼ 0 (7)

and choosing a controller to force the trajectories to reach optimal sliding surface (7), the SMC law can be
obtained such that the closed-loop system of system (1) is asymptotically stable. If one could solve TPBV
problem (5), the design is finished. However, finding the analytical solution of TPBV problem (5) is very
difficult. Hence, it is necessary to find an approximate approach to solve this kind of problem.
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3. Optimal sliding surface design

3.1. Preliminaries

Consider the autonomous nonlinear system with time delay described by

_xðtÞ ¼ GðtÞxðtÞ þHxðt� tÞ þ f ðt;x; vðtÞ; _vðtÞÞ; t40,

xðtÞ ¼ fðtÞ; �tptp0, ð8Þ

where x(t)ARn is the state vector, v(t)ARm the input vector, f(t) the initial state vector, G(t)ARn� n is a
continuous function matrix, HARn� n is a constant matrix, f: (R+�Rn

�Rm
�Rm)-Rn.

Lemma 1. [18] Define the state sequence {x(i)(t)} as

xð0ÞðtÞ ¼ Fðt; 0Þfð0Þ; t40,

xðiÞðtÞ ¼ Fðt; 0Þfð0Þ þ
Z t

0

Fðt; rÞ½Hxði�1Þðr� tÞ þ f ðr;xði�1ÞðrÞ; vðrÞ; _vðrÞÞ�dr; t40,

xðiÞðtÞ ¼ fðtÞ; �tptp0; i ¼ 1; 2; . . . , ð9Þ

where F(t, r) is the state transition matrix with respect to the matrix G. Then the sequence {x(i)(t)} uniformly

converges to the solution of system (8).
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3.2. SAA designing process

In order to solve TPBV problem (5) using the SAA, one constructs the following TPBV problem sequence

lð0ÞðtÞ ¼ 0,

� _l
ðiÞ
ðtÞ ¼ Qx

ðiÞ
1 ðtÞ þ AT

11l
ðiÞ
ðtÞ þ AT

12l
ði�1Þ
ðtþ tÞ,

lðiÞð1Þ ¼ 0; i ¼ 1; 2; . . . ,

x
ð0Þ
1 ðtÞ ¼ 0,

_xðiÞ1 ðtÞ ¼ A11x
ðiÞ
1 ðtÞ þ A12x

ði�1Þ
1 ðt� tÞ � SlðiÞðtÞ þDvðtÞ,

x
ðiÞ
1 ðtÞ ¼ j1ðtÞ; �tptp0; i ¼ 1; 2; . . . ð10Þ

and the corresponding ith sliding surface

sðiÞðtÞ ¼ Rx
ðiÞ
2 ðtÞ þ AT

13l
ðiÞ
ðtÞ ¼ 0. (11)

For the ith iteration, the state trajectory and sliding surface are x1
(i)(t) and s(i)(t) ¼ 0, respectively. The

following theorem is given out.

Theorem 1. Assume that {x1
(i)(t)} and {s(i)(t)} are the solution sequences of Eqs. (10) and (11), respectively. Then

{s(i)(t)} uniformly converges to the optimal sliding surface s*(t) ¼ 0 defined in Eq. (7) for system (1) with quadratic

performance index (4).

Proof. Let

lðiÞðtÞ ¼ P1x
ðiÞ
1 ðtÞ þ P2vðtÞ þ P3voðtÞ þ gðiÞðtÞ; i ¼ 1; 2; . . . , (12)

where

voðtÞ ¼ _vðtÞ ¼ �O v1 t�
p

2o1

� �
; v2 t�

p
2o2

� �
; . . . ; vm t�

p
2om

� �� �T
, (13)

O ¼ Diagðo1; o2; . . . ; omÞ, (14)

where P1 2 Rn1�n1 is a positive-definite matrix and P2, P3 are matrices of appropriate dimensions, gðiÞðtÞ 2 Rn1

is the ith adjoint vector. &

Deriving the two sides of (12) produces

_l
ðiÞ
ðtÞ ¼ P1 _x

ðiÞ
1 ðtÞ þ P2voðtÞ � P3O2vðtÞ þ _gðiÞðtÞ. (15)

Substituting the second and fifth equations in Eq. (10) into (15) and comparing the coefficients, one can get
the matrix equations

P1A11 þ AT
11P1 � P1SP1 þQ ¼ 0,

AT
11P2 þ P1D� P3O2 � P1SP2 ¼ 0,

AT
11P3 þ P2 � P1SP3 ¼ 0 ð16Þ

and adjoint vector differential equation as follows:

_gðiÞðtÞ ¼ ðP1S � AT
11Þg

ðiÞðtÞ � P1A12x
ði�1Þ
1 ðt� tÞ � AT

12l
ði�1Þ
ðtþ tÞ,

gðiÞð1Þ ¼ 0; i ¼ 1; 2; . . . . ð17Þ

It is obvious that the first equation of (16) is the Riccati matrix equation, so the unique positive-definite
matrix solution P1 can be easily gotten. Substituting P1 into the second and the third equations of (16), P2 and
P3 can be calculated.
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As x
ð0Þ
1 ðtÞ ¼ 0 and lð0ÞðtÞ ¼ 0, gð0ÞðtÞ ¼ 0 can be known from Eq. (12). Substituting (12) into (17), one can

obtain

_gðiÞðtÞ ¼ ðP1S � AT
11Þg

ðiÞðtÞ � P1A12x
ði�1Þ
1 ðt� tÞ � AT

12P1x
ði�1Þ
1 ðtþ tÞ

� AT
12gði�1Þðtþ tÞ � AT

12P2vðtþ tÞ � AT
12P3voðtþ tÞ,

gðiÞð1Þ ¼ 0; i ¼ 1; 2; . . . . ð18Þ

Substituting (12) into the fifth equation of (10), it produces

_xðiÞ1 ðtÞ ¼ ðA11 � SP1Þx
ðiÞ
1 ðtÞ þ ðD� SP2ÞvðtÞ � SP3voðtÞ � SgðiÞðtÞ þ A12x

ði�1Þ
1 ðt� tÞ,

x
ðiÞ
1 ðtÞ ¼ j1ðtÞ; �tptp0. ð19Þ

Substituting (12) into (11), it gives the ith sliding surface

sðiÞðtÞ ¼ Rx
ðiÞ
2 ðtÞ þ AT

13P1x
ðiÞ
1 ðtÞ þ AT

13P2vðtÞ þ AT
13P3voðtÞ þ AT

13gðiÞðtÞ ¼ 0. (20)

According to Lemma 1, sequences {g(i)(t)} and {x1
(i)(t)} in Eqs. (18) and (19) are uniformly convergent,

respectively. From Eq. (20), fx
ðiÞ
2 ðtÞg is only related to fx

ðiÞ
1 ðtÞg and fg

ðiÞðtÞg, so it is also uniformly convergent.
Then the optimal sliding surface is obtained

snðtÞ ¼ lim
i!1

sðiÞðtÞ ¼ Rx2ðtÞ þ AT
13P1x1ðtÞ þ AT

13P2vðtÞ þ AT
13P3voðtÞ þ AT

13gð1ÞðtÞ ¼ 0. (21)

The proof is complete. &

Actually, the optimal sliding surface in Eq. (21) cannot be calculated. A suboptimal sliding surface can be
found in practical applications by replacing N with M in Eq. (21)

sM ðtÞ ¼ Rx2ðtÞ þ AT
13P1x1ðtÞ þ AT

13P2vðtÞ þ AT
13P3voðtÞ þ AT

13gðMÞðtÞ ¼ 0. (22)

Remark 1. x1(t) and x2(t) in Eq. (22) are the accurate solutions. Only g(M)(t) is the Mth iterative result in place
of g(N)(t), so suboptimal sliding surface (22) is closer to the optimal sliding surface shown in Eq. (21) than the
Mth iterative sliding surface, which can be obtained by replacing i with M in Eq. (20).

We give a design algorithm of suboptimal sliding surface (22) as follows.

Algorithm 1. Suboptimal sliding surface design
Step 1: Solve the unique positive-definite matrix P1 from the first Riccati matrix equation of (16) and P2, P3

from the other two matrix equations of (16). Let x1
(0)(t) ¼ g(0)(t) ¼ 0, J0 ¼ 0 and i ¼ 1. Give some positive

constant e40.
Step 2: Obtain the ith adjoint vector g(i)(t) from Eq. (18).
Step 3: Letting M ¼ i, calculate x2

(M)(t) from Eq. (20).
Step 4: Calculate JM from

JM ¼ lim
T!1

1

T

Z T

0

½xT
1 ðtÞQx1ðtÞ þ ðx

ðMÞ
2 ðtÞÞ

TRx
ðMÞ
2 ðtÞ�dt: (23)

Step 5: If jðJM � JM�1Þj=JMo�, then stop and output the suboptimal sliding surface sM(t) in Eq. (22), else
calculate x1

(i)(t) from Eq. (19).
Step 6: Letting i ¼ i+1, go to step 2.
4. Sliding mode control design

A sliding reachability condition [19] is chosen as

_s ¼ gðs; tÞ ¼ �Ks� E signðsÞ, (24)
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where K ¼ diagfk1; k2; . . . ; kn2g, E ¼ diag½�1; �2; . . . ; �n2 �, with ki, ei40,

signðsÞ ¼ ½signðs1Þ; signðs2Þ; . . . ; signðsn2 Þ�
T. (25)

For linear systems with external disturbances, we develop the method of the sliding reachability condition
and propose the following sliding reachability condition

_siX� kisi � �i signðsiÞ; sio0,

_sip� kisi � �i signðsiÞ; si40; i ¼ 1; 2; . . . ; n2. ð26Þ

Choosing the switching function as (22) and using the following control:

uðtÞ ¼ � ðRBÞ�1fðRA21 þ AT
13P1A11 þ KAT

13P1Þx1ðtÞ þ ðRA22 þ AT
13P1A12Þx1ðt� tÞ

þ ðKRþ RA23 þ AT
13P1A13Þx2ðtÞ þ RA24x2ðt� tÞ þ ðAT

13P1D� AT
13P3O2 þ KAT

13P2ÞvðtÞ

þ ðKAT
13P3 þ AT

13P2ÞvoðtÞ þ KAT
13gðMÞðtÞ þ AT

13 _g
ðMÞðtÞ þ E signðsÞ þ rðxÞR signðsÞg. ð27Þ

One can ensure that the trajectories reach the ideal sliding surface in finite time and maintain on it
thereafter.

If v(t)�0, the following theorem is given out.

Theorem 2. Consider system (1) with control law (27). Assume that the sliding surface is chosen as (22). Then the

state trajectories of system (1) can reach the sliding surface in finite time and the closed-loop system is

asymptotically stable.
Proof. It is known that the state trajectories can be driven to suboptimal sliding surface (22) by control law
(27). From Eqs. (1), (22), (24), on the sliding surface (22), one has

_x1ðtÞ ¼ ½A11 � A13R�1AT
13P1�x1ðtÞ þ A12x1ðt� tÞ � A13R�1AT

13gðMÞðtÞ. (28)

And

x2ðtÞ ¼ �R�1AT
13½P1x1ðtÞ þ gðMÞðtÞ�. (29)

According to the optimal control theory, system (28) is asymptotically stable. Moreover, noting that
g(M)(N) ¼ 0, we obtain limt!1x2ðtÞ ¼ 0. The proof is complete. &
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Fig. 1. State variable x11(t) in the ith iteration.
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5. A simulation example

Consider the linear time-delay system with sinusoidal disturbances described by (1), where

A11 ¼
0 1

�1 1

" #
; A12 ¼

0 1

�1 �1

" #
; A13 ¼

0

2

" #
; D ¼

�0:1 0

0 0:1

" #
,

A21 ¼
�1

0

" #T
; A22 ¼

0

�1

" #T
; j1 ¼

10

6

" #
; x1 ¼

x11

x12

" #
; j2 ¼ �4,

A23 ¼ 1; A24 ¼ 1; B ¼ 1; t ¼ 1; d̄ ¼ a cos x2; a ¼ 0:04
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Fig. 2. State variable x12(t) in the ith iteration.

0 2 4 6 8 10 12 14 16 18 20

-25

-20

-15

-10

-5

0

5

10

15

20

25

t

x
2
(t

)

i=1
i=2
i=3
i=4

Fig. 3. State variable x2(t) in the ith iteration.
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and the sinusoidal disturbances v(t) can be expressed as

vðtÞ ¼
0:5 sin ðp=10Þtþ p

� �
sin ðp=18Þt
� �" #

.

We only know |a|p0.05, but the exact value of a cannot be known. So we get r(x) ¼ 0.05. The quadratic
performance index is chosen as (4), where Q ¼ I2, R ¼ 1. The matrices K and E in Eq. (24) are chosen as
K ¼ 1, E ¼ 0.01. Choosing e ¼ 0.1 and using Algorithm 1, we can get the simulation results of the state
variables and the performance index values, as shown in Figs. 1–3. It clearly shows that the state variables of
the closed-loop system are asymptotically stable. The relative error of performance index values satisfies
|(J4�J3)/J4|oe. Furthermore, the errors of the curves are smaller and smaller with the increase of the iteration
0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

t

u
(t

)

Fig. 4. Control input u(t) of the closed-loop system.
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Fig. 5. Switching function s(t) of the closed-loop system.
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times. It shows that the fourth suboptimal sliding surface s4(t) is sufficiently close to the optimal sliding surface
s�ðtÞ, and therefore switching function defined as (22) is obtained.

The new SMC can also be gotten according to Theorem 2. The simulation results of the control vector and
the sliding function are shown in Figs. 4 and 5. It is obvious that the state variables of the closed-loop system
can reach the sliding mode surface in finite time and remain on it. Furthermore, the controller can be
implemented easily as shown in Fig. 5.

6. Conclusions

The paper has designed a suboptimal sliding surface for linear time-delay systems with sinusoidal
disturbances based on the SAA. Moreover, a new SMC has been designed to force the state trajectories to
reach the sliding surface in finite time. The stability of the sliding mode has been proved.
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